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Abstract

We analyze a modified version of the "AgBr" Hamiltonian, solve exactly the equations

of motion in terms of SU(2) coherent states, and study the weak-coupling, macroscopic limit

of the model, obtaining an exponential behavior at all times. The asymptotic dominance

of the exponential behavior is representative of a purely stochastic evolution and can be

derived quantum mechanically in the so-called van Hove's limit (which is a weak-coupling,

macroscopic limit). At the same time, a temporal behavior of the exponential type, yielding

a "probability dissipation" is closely related to dephasing ("decoherence") effects and one

can expect a close connection with a dissipative and irreversible behavior. We stress the

central relevance of the problem of dissipation to the quantum measurement theory and to

the general topic of decoherence.

1 Introduction

Decoherence and dephasing have become very important concepts in quantum theory. Because

'decoherence' technically means the elimination of the off-diagonal elements of the density matrix,

a system described by such a diagonal density matrix should exhibit a purely stochastic behavior

and we naturally expect a close connection with a dissipative and irreversible behavior.

On the other hand, the temporal evolution of a quantum mechanical system, initially prepared

in an eigenstate of the unperturbed Hamiltonian, is known to be roughly characterized by three

distinct regions: A Gaussian behavior at short times, a Breit-Wigner exponential decay at inter-

mediate times, and a power law at long times [1]. It is well known that the asymptotic dominance

of the exponential behavior is representative of a purely stochastic evolution and can be derived

quantum mechanically in the weak-coupling, macroscopic limit (the so-called van Hove's limit) [2].

One may expect a close connection between dissipation and exponential decay. Such a connection

has been recently emphasized by Leggett [3]. The Gaussian short-time behavior is in itself of

particular significance due, in particular, to the so-called quantum Zeno effect [4, 5].

319



In this note, an exponential behavior at all times is derived for a solvable dynamical model

[6, 7] in the weak-coupling, macroscopic limit [8]. We shall emphasize the important role played

by van Hove's diagonal singularity in the present model, together with the central relevance of

the problem of dissipation to the quantum measurement theory [9] and to the general topic of

decoherence [10]. The present derivation of the exponential behavior differs from the one given in

Ref. [8], in that no use is made of scaled variables.

A temporal behavior of the exponential type, yielding a "probability dissipation" is closely

related to dephasing effects and is a rather common feature of the interaction between microscopic

and macroscopic systems. In this context, the present model is very interesting, because the

measurement process is often viewed as a dephasing process and "decoherence" is regarded as

a consequence of the interaction with (macroscopic) measuring devices, within the framework of

quantum mechanics.

2 The 'AgBr' model

We shall base our discussion on the AgBr model [6], that has played an important role in the

quantum measurement problem, and its modified version [7], that is able to take into account

energy-exchange processes.

The modified AgBr Hamiltonian [7] describes the interaction between an ultrarelativistic par-

ticle Q and a 1-dimensional N-spin array (D- system). The array is a caricature of a linear

"photographic emulsion" of AgBr molecules, when one identifies the down state of the spin with

the undivided molecule and the up state with the dissociated molecule (Ag and Br atoms). The

pm'ticle and each molecule interact via a spin-flipping local potential. The total Hamiltonian for

the Q+D system reads

H = Ho + H', Ho = HQ--[- HD,

1 N a_'*))HQ = c_, HD = -_hw _-_ (1 + ,
n= 1

N

H'= _ V(_.-x,,)[a(+n)exp (-i_:_)+ h.c.], (1)
r_= 1

where HQ and HD are the free Hamiltonians of the Q particle and of the "detector" D, respectively,

H' is the interaction Hamiltonian, _ the momentum of the Q particle, _ its position, V a real

potential, xn (n = 1, N) the positions of the scatterers in the array (x,, > x,,-a) and ..(n) the"'", _' _,4-

Pauli matrices acting on the nth site. An interesting feature of the above Hamiltonian, as compared

to the original one [6], is that we are not neglecting the energy HD of the array. This enables us

to take into account energy-exchange processes between Q and D. The original Hamiltonian [6] is
reobtained in the w = 0 limit.

The evolution operator in the interaction picture can be computed exactly [7] as

U ( t, t') = eiH°tlh e-_H(t-t')l_ e -iH°t' /t*

[o ()])
_.=- 1

and a straightforward calculation yields the S-matrix

N [ .Vo6 ,.,
S [gl = ,--._¢limU(t,t') = 1-I S(n) = exp _-*--_--c er' ' • u] (3)

ts_.,_oQ n=l
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where u = (cos(wx/c), sin(wx/c), 0) and Vo5 = f___ V(x)dx. The "spin-flip" probability, i.e. the

probability of dissociating one AgBr molecule, reads

q = sin2 \ hc ]" (4)

If the initial D state is taken to be the ground state [0>g (N spins down), and the initial Q

state is a plane wave, the final state is

S[NllP,0>N= (-ivq) j IP- (5)
j=O

This enables us to compute several interesting quantities, such as the visibility of the inter-

ference pattern obtained by splitting an incoming Q wave function into two branch waves, one

of which interacts with D, the energy "stored" in D after the interaction with Q, as well as the

fluctuation around the average. The final results are

]; = (1 - q)N/2 ---, e-_/2, <HD>F = qN hw ---*_hw,

(_HD> F = _/((H D - <HD>F)2>F = V/-_Y hw --, V_hw, (6)

where F stands for final state, p = 1 - q, and the trivial trace over the Q particle states is

suppressed. The arrows signify the weak- coupling, macroscopic limit N --_ co, qN = _ = finite

[7]. All results are exact. It is worth stressing that qN = _ represents the average number

of excited molecules, so that interference, energy and relative energy fluctuations "gradually"

disappear as _ increases. Observe also that (5) is a generalized [SU(2)] coherent state and becomes

a Glauber coherent state in the N --_ c_, qN = finite limit.

Our next (and main) task is to study the behavior of the propagator. We start from Eq. (2), set

t' = 0 for simplicity, and return to the Schr5dinger picture by inverting Eq. (2). The exponential

is easily disentangled by making use of SU(2) properties. We get

e-iHt/h = e-iH°t/h I-I (e-itan(a')a(")(_)e-lne°s(a")a_")e-itan(c'")a(-_)(_) ' (7)
n= 1

where a,, = a,,(_, t) - f_ V(_ + ct' - xn)dt'/h. Notice that the evolution operators (2) and (7) as

well as the S-matrix (3) are expressed in a factorized form: This is a property of a rather general

class of similar Hamiltonians [11].

Let the Q particle be initially located at position x' < xl (xl is the position of the first scatterer

in the linear array) and be moving towards the array with speed c. The initial D state is again the

ground state ]0)N of the free Hamiltonian HD (all spins down). This choice of the ground state is

meaningful from a physical point of view, because the Q particle is initially outside D.

The propagator

c(z,x',t) =_<xl ® Ix'>, (s)

can be easily calculated from eq. (7). We place for simplicity the spin array at the far right of the

origin (xl > 0) and consider the case where potential V has a compact support and the Q particle

is initially located at the origin x' = 0, i.e. well outside the potential region of D. We get

N ct

5'_(t) =- fo g(y- x,)dy/hc. (9)G(x,O,t) = 5(x- ct) g cosec(t),
n----1
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This result is exact. Notice that the "spin-flip" probability (4) is q = sin 2 _,(c_) = sin_(V0ft/hc).

We consider again the weak-coupling, macroscopic limit

and set

(' V°12 _ 2 -- O(N-l), (10)
q --_ \-_-c ]

x,, = xl + (n - 1)A, L -- XN -- x, = (N - 1)A. (11)

The following derivation is different from the one given in Ref. [8]. We keep L finite and

consider the continuous limit A/L _ 0 as N ---* o¢. A summation over n is then replaced by a

definite integration

q,_=l_ f(x,_) ---* _ , f(x)dx _- L J,, f(x)dx. (12)

For the sake of simplicity, we restrict our attention to the case of 5-shaped potentials, by setting

V(y) = (Vol2)5(y). We get

G oc exp _ In cos ]__. (VoD/Sc)5(y)dy = exp In {cos [(Vol2/hc)O(ct - x,,)]}
kn= 1

where O is the step function and the arrow denotes the weak- coupling, macroscopic limit (10).

This brings about an exponential regime as soon as the interaction starts: Indeed, if xl < ct < XN,

G _x exp -- - ,

where to = xl/c is the time at which the Q particle meets the first potential. Notice that there is

no Gaussian behavior at short times and no power law at long times. Observe that IGI2 is nothing

but the probability that Q goes through the spin array and leaves it in the ground state.

It is well known [1, 4] that deviations from exponential behavior at short times are a con-

sequence of the finiteness of the mean energy of the initial state. If the position eigenstates in

eq. (8) are substituted with wave packets of size a, a detailed calculation shows that the expo-

nential regime is attained a short time after to, of the order of a/c, which, in the present model,

can be made arbitrarily small. Moreover, a detailed calculation (by H. Nakazato), making use of
b b

square potentials of strenght Vo and width b yields, for xl + _ < ct < xN - 5,

G °c exp ( -_c(t - t°)2L+12-L_b) . (15)

In this case, the exponential regime is attained a short time after to, of the order of the width of

the potential V. The regions t ._ to + O(a/c) and/or t .., to + O(b/c) may be viewed as a possible

residuum of the short-time Gaussian-like behavior. For this reason, the temporal behavior derived

in this Letter is not in contradiction with some general theorems [1, 4].

What causes the occurrence of the exponential behavior displayed by our model ? This is a

delicate problem. Our analysis suggests that the exponential behavior is mainly due to the locality
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of the potentials V and the factorized form of the evolution operator U. On the other hand, there

are also profound links between the limiting procedure considered in this letter and van Hove's

"A2T '' limit [2]. Work is in progress in order to clarify different aspects of this issue. Let us briefly

discuss them. First of all, the evolution operators (2), (7) and the S-matrix (3) are expressed in a

factorized form: This shows that the interactions between Q and adjacent spins of the array are

independent, and the evolution "starts anew" at every step. This suggest the presence of a sort of

Markovian process, which would justify the purely dissipative behavior (14). At the same time,

the role played by the energy gap w deserves to be clarified: w plays undoubtedly an important

role by guaranteeing the consistency of the physical framework, as discussed in [8]. On the other

hand, the connection between the exponential "probability dissipation" (14) and the (practically

irreversible) energy-exchange between the particle and the "environment" (our spin system) is a

very open problem and should be investigated in detail. Leggett's remark [3], about the central

relevance of the problem of dissipation to the quantum measurement theory makes the above topic

very interesting: Indeed, in our opinion, the temporal behavior derived in this note is certainly

related to dephasing ("decoherence") effects of the same kind of those encountered in quantum

measurements.

Second, it is worth discussing the link between the weak-coupling, macroscopic limit qN = _ =

finite considered above and van Hove's "A2T '' limit [2], leading to the master equation. The

interaction Hamiltonian H' has nonvanishing matrix elements only between those eigenstates of

H0 whose spin-quantum numbers differ by one. As discussed in [8], this causes van Hove's so-called

diagonal singularity, because for each diagonal matrix element of H _, there are N intermediate-

state contributions: For example

N

(0,..., OIH_IO,..., O) = _ I(O;..., OIH'IO,..., O, lo), 0,..., 0)12.
j=l

(16)

On the other hand, at most 2 states can contribute to each off-diagonal matrix element of H '2.

This ensures that only the diagonal matrix elements are kept in the weak-coupling, macroscopic

limit, N --. c_ with qN < oc, which is the realization of diagonal singularity in our model.

The link with-the A2T limit is easily evinced from the following reasoning: The free part of the

Hamiltonian is HQ = c_, so that the particle travels with constant speed c, and interacts with

the detector for a time T = L/c, where L _- NA is the total length of the detector. Since the

coupling constant A - g oc V0fl, one gets A2T = g2NA/c c( qN. Notice that the "lattice spacing"

A, the inverse of which corresponds to a density in our 1-dimensional model, Can be kept finite in

the limit. (In such a case, we have to express everything in terms of scaled variables:) As a final

remark, we stress that the limit N --_ o¢ with qN < oc considered in this note is physically very

appealing, in our opinion, because it corresponds to a finite energy loss of the Q particle after

interacting with the D system.
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